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Abstract. Distributed Network Scheduling is the 
scheduling of future communications of a network by nodes 
in the network.  This report details software for doing this 
onboard spacecraft in a remote network.  While prior work 
on distributed scheduling has been applied to remote 
spacecraft networks, the software reported here focuses on 
modeling communication activities in greater detail and 
including quality of service constraints.  Our main results 
are based on a Mars network of spacecraft and include 
identifying a maximum opportunity of improving traverse 
exploration rate by a factor of three; a simulation showing 
reduction in one-way delivery times from a rover to Earth 
from as much as 5 to 1.5 hours; simulated response to 
unexpected events averaging under an hour onboard; and 
ground schedule generation ranging from seconds to 50 
minutes for 15 to 100 communication goals. 

1 Introduction 
This paper focuses on issues of autonomously adapting 
communications for a remote network of spacecraft.  If the 
spacecraft are designed to always guarantee available 
resources (e.g. transceivers, memory, power) to 
autonomously redirect communications on the fly, then in 
order to make such reactive communications autonomous, 
all that is needed onboard are control sequences for 
switching transceivers and slewing and routing algorithms 
for intermittent communication opportunities (Akyildiz et 
al. 2003).  Such spacecraft designs can be expensive since 
providing resources for all possible scenarios can incur 
significant additional vehicle mass.  We investigate 
missions where communications resources are limited, 
requiring autonomous planning and execution.  Unlike 
typical networks, spacecraft networks are also suited to 
automated planning and scheduling because many 
communications can be planned in advance.  Because the 
network of spacecraft can represent multiple missions, 
missions will be reluctant to give up control of the 
spacecraft.  Because communication among spacecraft is 
often intermittent (due to orbital and resource constraints), 
a spacecraft that can make scheduling decisions 
autonomously will be more responsive to unexpected 
events.  Thus, a centralized planning system will not be 
sufficient to enable reactive communications, so we 
propose a distributed network scheduling system. 

 The software automatically negotiates the rescheduling 
of these communications with other spacecraft while 
respecting constraints with communication resources (such 
as memory and transceiver availability).  Each node 
(spacecraft) tracks only its own communication activities 
and makes its own scheduling decisions but can propose 
communications with others.  It provides an interface for a 
user or automated process to request communication 
service and to receive a reservation with updates on the 
expected or resulting quality of service (QoS).  The 
communication needed to coordinate planning (“meta-
communications”) are not scheduled by the system because 
the overhead is insignificant compared to science image 
transfers.  However, simulations of the system limit this 
communication to available view periods. 
 Figure 1 shows the architecture of a single node in the 
distributed network scheduling system. The middleware 
component provides an application-level interface to the 
communications protocol stack.  It passes requests from 
users (e.g. mission operations staff, scientists), autonomous 
control systems, or other spacecraft to a distributed 
planning interface that manages the negotiation process, 
and instantiates goals in the planner.  The planner 
schedules communications to achieve the goal with help 
from adaptive communication algorithms.  It does this by 
providing contextual information about the future network 
state and the communication goal in question.  The 
adaptive algorithms then simulate and report how data will 
be transferred and with what quality of service (QoS).  The 
distributed planning interface then returns the schedule and 
QoS information to the requestor as a reservation.  
Distributed planning also manages the negotiation of 
requests as the needs of the spacecraft change (as 
determined by the planner).  Status of reservations are 
updated and reported as re-planning, negotiations, and 
execution of communication activities unfold. 
 In the remainder of this document, we describe the 
interfaces of the architectural components and their 
implemented capabilities.  We then show that the 
exploration rate of a rover (similar to Mars Science 
Laboratory – MSL) on a long traverse can be improved by 
no more than a factor of three with adaptive 
communications.  We also simulate communications 
between a rover and Earth with orbiter relays to 



demonstrate reduced latency by as much as 3.5 hours. We 
then report experiments on a simulated Mars network of 
five spacecraft/rovers to gauge the systems ability to 
reactively re-schedule communication activities in a 
distributed fashion. 

2 Communication Requests, Reservations, 
and Status 
An application or user requests future communication from 
the network by providing values for the following 
variables:  
 
• int id – index for tracking 
• string source – who is sending data  
• string destination – who is receiving the data 
• int size – estimate of size of data to be sent in Kbits 
• real bandwidth_min – minimum required 

bandwidth Kbits/s 
• real bandwidth_max – maximum usable 

bandwidth in Kbits/s 
• real priority – importance of fulfilling request 

(larger numbers indicate greater importance) 
• int start_time_min – minimum requested start 

time of communication 
• int start_time_max – maximum requested start 

time of communication 
• int duration_min – minimum needed time 

duration of initial data transmission 
• int duration_max – maximum requested time 

duration of initial data transmission 
• int delivery_time_min – minimum required 

delivery time 

• int delivery_time_max – maximum requested 
delivery time 

• bool progressive – whether data is recreated as it 
is received (= true) or transmission is only valuable 
when completed, i.e. all or nothing (= false) 

• real loss_overall – maximum percentage loss 
tolerance of overall data 

• real loss_per_block – maximum percentage loss 
tolerance for any block 

• real loss_block_size – size of block for which 
the loss tolerance is specified 

• string protocol – what protocol(s) should be used 
for transmission and with what options (e.g. CFDP -
noack); this string has no generic structure and is to be 
generated and interpreted by adaptive communications 
software through an interface. 

 
 Upon receiving a request, the network will schedule 
(“reserve”) the communication and reply with the expected 
quality of service for the same variables above and a real-
valued percent_delivered variable, indicating the 
percentage of the data delivered or expected to be 
delivered.  Status during and upon completion of execution 
is also reported through the same construct. 

3 Local Scheduling 
We use the ASPEN planning system (Chien et al., 2000) to 
schedule communications according to constraints on 
memory, transceiver availability, and available windows of 
communication between scheduling nodes (spacecraft).  
The main activities scheduled are send, receive, and 
relay, for transmitting, receiving, and relaying data files.  
Segmentation and reassembly of files is supported for 
when files are too large to be sent in available 
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Figure 1. Distributed network scheduler architecture 



communication windows.  In addition, scheduling supports 
cut-through switching, receiving and relaying a file 
simultaneously when multiple transceivers are available.  
The timing and duration of activities takes into account 
constraints on communication delay and bandwidth.  
While quality of service estimates/status is propagated 
through the network, the scheduler currently does not 
handle failures, such as over-tolerance data loss. 

3.1 Scheduler Activities 
The main activities we use to model data transfer are 
send, transmit, receive, and relay.  The send 
activity recursively decomposes into a series of 
transmit activities for segmentation of the file transfer.  
It also includes a free_memory activity following each 
transmit where the amount of data sent is replenished 
to a memory resource at a time indicated by a 
free_type parameter, which has one of the following 
values: “never”, “on transmission”, “on 
delivery”, “on_custody_xfer.”  If “on 
transmission,” the memory is freed at the end of the 
transmit activity.  If “on delivery,” memory is 
freed at the end of the receive activity of the receiving 
node.  The “on_custody_xfer” value is intended to 
support custody transfer protocols that are not yet 
implemented. 
 When one node is executing the send activity, the 
receiving node executes a relay activity.  The relay 
activity decomposes into a receive activity.  If the 
receiving node is not the intended destination of the file, 
then the relay activity also decomposes into a send 
activity, routing the data elsewhere. 
 The transmit and receive activities are 
constrained to be scheduled only during available 
communication windows, which are modeled as states 
having “in_view” and “out_of_view” values over 
time intervals provided by the system designer.  These 
activities also must reserve a transceiver resource from a 
set provided by the system designer.  The adaptive 
communication algorithms (shown in Figure 1) provides 
the assignment algorithm.  The receive activity also 
consumes memory of the amount of the data received. 
 Delay between the start of the send and receive 
activities between pairs of nodes is specified through an 
adaptive communications function.  Cut-through switching 
is implemented in the relay activity.  This is where a file 
is received and transmitted simultaneously.  The start of 
the send sub-activity (of relay) is computed according 
to the start of the receive sub-activity and the data rates 
of both receive and send such that data blocks are not 
sent before they received.  These activities and resources 
are modeled in the ASPEN (Activity Scheduling and 
Planning Environment) modeling language (Sherwood et 
al. 2000).  
 The interface to adaptive communication algorithms 
(shown in Figure 1) is simply the provision of many of the 
dependency functions in the above activities.  Again, these 

functions could be provided in a middleware 
communication layer. 

3.2 Resources and States 
• memory – Decisions about when to store and delete data 

are based on memory availability. 
• data – It may be important to keep track of whether 

particular data files are stored or deleted in case one 
needs retransmission due to an unexpected failure. 

• antenna(s) – Spacecraft can only communicate with one 
(or maybe two) others at a time. 

• communication windows – Spacecraft can only 
communicate when in view of each other. 

 
 Obvious resources that are not considered are power and 
battery energy.  We do not consider the network 
scheduler’s role to handle these other resources and 
assume that their safe use is guaranteed by ground 
operations or an onboard planning and execution system. 

3.3 Metrics 
The network scheduler currently reschedules to resolve 
conflicts, but can be extended to optimize the schedule 
according to summed priority of scheduled activities over a 
horizon by using ASPEN’s optimization framework.  The 
network scheduler itself will be evaluated in simulation 
according to time to resolve new or changed requests.  
This will be compared to current techniques later in the 
Evaluation section. 

3.4 Adaptive Communication API 
The following functions (listed as dependencies in the 
model of the activities) should be implemented to decide 
how to adapt communication for a given context: 
 
string choose_antenna(my_name, protocol, 
requested_bandwidth) 

determine which antenna should be used according to 
the protocol and requested bandwidth 

string route_to(sender, destination, 
protocol) 

determine to whom data should be routed next 
real request_bandwidth(requested_bandwidth, 
sender, antenna, receiver, bandwidth) 

determine the appropriate bandwidth based on the 
protocol and the requested bandwidth 

bool is_interruptible(protocol) 
determine whether are not the transmission can be 
interrupted and continued later 

bool is_progressive(protocol) 
determine whether or not this protocol allows the file 
to be created as it is received (otherwise it is sent all-
or-nothing) 

string get_free_type(protocol) 
determine when the data can be cleared from memory 
(i.e. when custody is transferred); valid values are 
“never”, “on_transmission”, “on_delivery”, 
and “on_custody_xfer” 



real reply_percent_delivered(protocol, 
duration, bandwidth, size,percent_delivered) 

determine the percentage of the data expected to be 
delivered 

real reply_loss_overall(protocol, 
loss_tolerance_overall) 

determine the percentage loss of the overall image 
according to the protocol and the requested tolerance  

real reply_loss_per_block(protocol, 
loss_tolerance_per_block, loss_block_size) 

determine the maximum percentage loss of the image 
per block according to the protocol and the requested 
tolerance  

real calc_send_bandwidth(my_name, 
send_start_time, destination, receiver, 
antenna, requested_delivery_time, 
delivery_time_max, send_protocol) 

determine the expected bandwidth to be used by the 
sender’s protocol base on the request  

string get_send_protocol(my_name, 
send_start_time, destination, receiver, 
antenna, requested_delivery_time, 
delivery_time_max, send_bandwidth) 

determine the protocol the sender should use for this 
request 

4 Distributed Scheduling 
Scheduling is distributed by propagating information 
through the network to nodes that are affected and by 
giving each node some level of decision-making authority 
with respect to local scheduling.  We use Shared Activity 
Coordination (SHAC) (Clement and Barrett, 2003) to 
implement this. 
 SHAC is an interface between planning/scheduling 
systems, a general algorithm for coordinating distributed 
planning, and a framework for designing and 
implementing more specific distributed planning 
algorithms.  Within SHAC, a shared activity is an activity 
that some set of planners must collectively schedule.  It can 
be a coordinated measurement, a team plan in which 
planners have different roles, a use of shared resources, or 
simply an information sharing mechanism.  Planners are 
coordinated when they reach consensus on the shared 
activity. Consensus is achieved when they agree on values 
for members of the shared activity structure: 
 
• Parameters: Shared variables (e.g. start time, duration, 

bandwidth) 
• Constraints: Each planner’s constraints on parameter 

values 
• Roles: Subset of planning agents assigned to roles 
• Permissions: Variables that determine how each planner 

is allowed to add, remove, and modify a shared activity 
 
 Roles determine how an agent participates in the shared 
activity.  For example, a transmit role in a shared 
communication activity has different resource constraints 
than the receive role.  Roles specify which agents share the 
activity and can determine permissions and the protocol 

used to govern the agent’s handling of the shared activity.  
Constraints can specify restrictions the agents have on the 
values of parameters.  By propagating local constraints, 
agents can make scheduling choices that avoid conflicts 
with others without knowing the details of their plans.  For 
example, an agent can send a constraint on the time 
windows of an activity as local scheduling constraints. 
 Protocols (distributed planning algorithms) specify how 
constraints, roles, and permissions of the shared activities 
change over time and are used to resolve conflicts among 
the planners.  For example, a round-robin protocol rotates 
permission assignments among the planners, giving them 
each turns to replan the activity.  A delegation protocol 
assigns and re-assigns agents to roles.  Protocols are 
designed by sub-classing built-in and user-defined protocol 
classes. 
 By constructing protocols and modeling the attributes of 
shared activities, a system designer specifies the autonomy 
of each agent with respect to decision-making and 
computation.  A completely centralized approach gives one 
agent a role in each activity with full permissions.  
Decentralization is introduced when agents propagate 
constraints, when agents fulfill different roles, or when 
more than one agent has planning/scheduling permissions.  
The SHAC coordination algorithm (stated simply) is a 
continual loop of refining/replanning, applying protocols 
to further modify shared activities, sending shared activity 
updates to the sharing planners, and integrating updates 
from others.  The planner interface enables different 
existing planning tools to interact in this framework.  More 
information about the algorithm and protocols can be 
found in (Clement and Barrett, 2003, Clement et al., 2004). 
 SHAC is customized for the particular application 
domain.  For a Mars network, we specified shared 
activities between pairs of spacecraft mapping transmit 
activities of one spacecraft to relay activities in another.  
Shared parameters include those of the request/reservation.  
The roles specify which local activity (transmit or 
relay) corresponds to each agent (spacecraft) potentially 
participating.  The transmitter is assigned a delegation 
protocol for choosing a spacecraft to relay the data.  Other 
agents are assigned a subordination role. The 
subordination protocol will remove the agent from the 
shared activity’s roles with a specified probability if the 
agent is yet unable to successfully schedule the activity 
locally.  This triggers the delegator to assign another 
subordinate. 

5 Evaluation 
The distributed network scheduler enables reactive 
communications within the context of scheduled 
operations by autonomously negotiating over 
communication changes.  In addition, the scheduling 
system can generate schedules using the same negotiation 
mechanisms.  This means that separate missions (such as 
the many studying Mars) can use this software to 
collaboratively schedule communications on the ground.  



A prototype network scheduling system was implemented 
for communication models of MER-A, MER-B, MGS 
(Mars Global Surveyor), Odyssey, and Mars Express.  We 
give experimental results for this application domain after 
giving more theoretical results illustrating the benefits of 
adaptive communication for rover exploration that this 
system enables. 

5.1 Rover Exploration Performance 
Here we examine the science return performance of a 
semi-autonomous rover investigating rocks during a long 
traverse between sites.  We simulate a traverse based on 
early MSL scenarios where a rover has the ability to 
autonomously detect rocks of potential scientific interest, 
downlink images, and investigate based on commands 
returned after scientists have studied the images.  The 
rover continues along its path and turns back to perform 
detailed measurements if commanded.  Figure 2 illustrates 
how the rover must traverse the path three times in order to 
return to the rock.  In the worst case, a target rock is 
identified just after each communication opportunity 
causing the rover to traverse the entire distance three times.  
By providing more communication opportunities through 
adaptive rescheduling this backtracking can be reduced, 
resulting in a theoretical opportunity of threefold 
exploration speedup.  

 We simulated traverses with communication 
opportunities at fixed time intervals and placed rocks along 
a straight-line path according to a Poisson distribution.  
The intervals between communication opportunities and 
number of total rocks were varied for each run.  Figure 3 
shows a plot of how the rover’s exploration speed 
approaches the optimal as the number of communications 
opportunities increases with respect to the number of 
rocks.  Adaptive communications allows the rover to take 
advantage of opportunities that were previously 
unscheduled.  This does not mean that additional 
bandwidth to Earth is required since only the needed 
opportunities are taken.  By giving more opportunities, the 
overall performance is increased.  For example, if the 
communications opportunities are doubled (moving the x-
axis ratio from 1.0 to 2.0 in the figure), there is a potential 
increase from 0.5 to 0.6 (y-axis) in the normalized 
exploration speed of the rover, resulting in a 20% increase 
in science return. 

5.2 Rover Communication Performance 
In some situations a rover must sit idle while waiting on a 
response from Earth.  For example, using the Rock 
Abrasion Tool (RAT) can take as long as nine days 
because of uncertainties of executing a long sequence of 
grinding, drilling, sampling, and measuring and the delays 
of communication in getting new sequences from ground.  
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Figure 2.  Rover backtracking to study a rock during a traverse  
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Figure 3. The effect of increasing communication opportunities on rover exploration speed 



Thus, reducing the delay between the need for 
communication and getting a response is of great interest 
to Mars missions. 
 Using information about the duration and frequency of 
orbiter passes as well as cross-link intervals between 
orbiters and Earth, we simulated the transfer of data from a 
rover to Earth with potential routing through orbiters or a 
direct-to-Earth (DTE) link.  Passes of MGS and Odyssey 
with rovers is 10 minutes in duration, and Mars Express is 
8 minutes with rovers.  Communication delays are 20 
minutes with Earth and 1 second otherwise.  Figure 4 
shows mean delivery times (in seconds) to Earth for 1000 
simulations per point of four routing cases based on 
varying numbers of scheduled communications and 
possible windows of opportunity.  “Static” means that only 
scheduled links can be used, and “dynamic” means that 
any window can be adaptively scheduled on the fly.  
“Direct” means that the rover can only use DTE 
communications, and “routed” means that it can route 
through orbiters.  Dashed lines show the 95% confidence 
interval, indicating variance.  Outliers skew the mean and 
cause the jaggedness of the plot.  Here we assume that all 
DTE opportunities are scheduled, so the static/direct and 
dynamic/direct cases are the same. 
 The difference in the static/routed and dynamic/routed is 
the performance improvement for rescheduling 
communications on the fly.  For a ratio of one (where all 

windows are scheduled), performance is the same (as 
expected), a little over 5000 seconds (about an hour and a 
half).  For fewer scheduled windows, the performance 
quickly degrades and approaches the DTE plot (at the top) 
of ranging just below five hours. The difference in the 
static/routed and the DTE plot shows the performance 
improvement of routing through orbiters as the number of 
scheduled routing opportunities decreases. 

5.3 Mars Network Experiments 
A rover can take advantage of sending data to an over-
passing orbiter with minimal negotiation.  The orbiter can 
weigh the priority of the rover’s data with the orbiter’s 
current resource needs and decide whether it will agree to 
relay the data.  We have assumed that the orbiters always 
agree to route the rover’s data in the above experiments.  
However, once they have agreed to the new 
communications goal, the network of spacecraft may need 
to reschedule other communications.  But, how long does 
it take for the network to reach consensus on a new 
schedule based on the addition of a goal? 
 We performed experiments for the Mars network given 
the same communication scheme for the previous 
simulation to see how long the distributed network 
scheduler could reach consensus upon the addition of a 
new communications goal.  The passing of time was 

 
 

Figure 5. Improvement of adaptive rescheduling in delivery time from rover to Earth 



simulated, and coordination messages were routed through 
SHAC according to the availability communication 
windows.  We modeled SHAC similar to that at the end of 
the Distributed Scheduling section.  To simulate the 
slowdown of flight processors, we need time to pass 
around 500-1000 times faster than real time.  Since all five 
spacecraft were run on the same workstation in these 
experiments, we simulated time passing 100 times faster 
than system time for a slowdown factor of 500, roughly. 
Measurements were made in both cpu seconds and actual 
seconds while simulating time.  Replanning cycles (1 for 
each SHAC cycle) were restricted to 20 ASPEN iterations, 
and when there were no remaining conflicts, SHAC slept 
for 0.1 seconds (10 simulated seconds) between cycles.  
Results for 5 problems are reported for each number of 
goals ranging between 3 and 20.  These numbers are of 
communication goals for each spacecraft over a 3-day 
horizon. Goals were randomly generated with data size 
ranging between 2 and 100 Kbits, with delivery deadlines 
ranging between 40,000 and 100,000 seconds (~11 to 28 
hours), and with random destinations to either Earth or a 
rover (but rovers always send to Earth).  Once a schedule 
was generated, another goal was added for a random 
spacecraft at a random time in order to measure the effort 
in reaching consensus for an unexpected event. 
 Figures 6 and 7 show the results of rescheduling for one 
goal added to the system.  Each point in the plots is a 
mean, min, or max value for the five spacecraft.  Figure 6 
shows that cpu time is limited to less than 200 seconds for 
a spacecraft.  On a flight processor, this translates to 

100,000 to 200,000 seconds, or 28 to 56 hours.  The mean 
maximum time is between 4 to 30 seconds, or 1 to 14 
hours.  The system time in Figure 7 shows that on average, 
the system reaches consensus in less than an hour 
(according to the max time trend line), but it can take a 
little more than 200 actual seconds in some cases.  We 
must multiply this by the simulation speedup factor of 100; 
thus, the approximate maximum time onboard for this 
problem set would be roughly 56 hours.  This means that 
without careful coordination, activities scheduled within 
56 hours of the unexpected event could be executed 
inconsistently with respect to other spacecraft.  To resolve 
this problem, the spacecraft should switch to a simpler 
protocol with real-time consensus guarantees for activities 
soon to be executed.  Although not employed in this 
application, an algorithm for determining when this switch 
should occur (based on the time of the activity, 
communication windows, and the routing required by the 
simpler protocol) is described in (Clement and Barrett, 
2003).  Communication overhead for reaching consensus 
ranged to at most 25 messages and 18 kilobytes.  Many of 
the goals could be resolved locally, requiring no 
communication.  Although not shown here, initial schedule 
generation (applicable to collaborative ground planning) 
averaged 25 cpu seconds, 102 actual seconds, 91 
messages, and 55 kilobytes per spacecraft. The actual time 
(to reach consensus) ranges from seconds to 50 minutes.  
Plots of these results can be found in a lengthier version of 
this paper (Clement and Schaffer, 2004). 
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Figure 6. CPU time for scheduling a single goal 



6 Conclusion 
This report described software for onboard distributed 
scheduling of communications among a network of 
spacecraft in a fashion.  The distributed network scheduler 
enables reactive communications within the context of 
scheduled operations by autonomously negotiating over 
communication changes.  In addition, the scheduling 
system can generate schedules using the same negotiation 
mechanisms to enable missions (such as the many for 
Mars) to collaboratively schedule communications on the 
ground.  Evaluations were based on models of MER-A, 
MER-B, MGS, Odyssey, and Mars Express.  Our main 
results include: 
• simulation showing a maximum opportunity of 

improving traverse exploration rate by a factor of three; 
• simulation showing reduction in one-way delivery times 

from a rover to Earth from as much as 5 to 1.5 hours; 
• simulated onboard response to unexpected events 

averages under an hour; and 
• ground schedule generation ranging from seconds to 50 

minutes for 15 to 100 goals. 
 Future work includes extending the software to schedule 
during execution using varied protocols to give real-time 
consensus guarantees and integrating the software with a 
realistic communications simulator. 
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